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On the Coulomb Green function 

Le Van Hoang, L I Komarov and T S Romanova 
Department of Physics, Byelorussian State University, Minsk-80, USSR 

Received 1 June 1988 

Abstract. The connection between the Green function for the isotropic harmonic oscillator 
in two-dimensional complex space and the Coulomb Green function is established using 
the method of path integrals. The representations for the Coulomb Green function are 
proposed to be useful in concrete applications. 

1. Introduction 

In many applications of analytical methods in perturbation theory the use of the 
Coulomb Green function plays an important role. In the present paper the connection 
between the Green function for an isotropic harmonic oscillator in two-dimensional 
complex space and the Coulomb Green function is established which permits one to 
obtain a useful representation for the latter. In our calculations we use the connection 
between the Schrodinger equations which has been found by Komarov and Romanova 
(1982), since we consider it to be the most adequate (as compared, for example, with 
the results of Chen (1982), Cornish (1984) and Kibler and Negadi (1983)) for the 
construction of purely algebraic methods of performing concrete calculations with the 
Coulomb Green function. 

2. The connection with the Green functions 

Let us consider the Schrodinger equation in the space with the complex coordinates 
.& (s = 1,2) (we assume 5, to be the spinor components): 

where the asterisk denotes the operation of complex conjugation, with summation over 
repeated indices. In equation (1) w is a real positive number. The Green function for 
the equation (1) in the 'energy' representation is a solution of the following equation: 

where 6: = Re &, &'= Im & and S(x) is a Dirac S function. One of the ways of 
constructing the function U ( [ ,  77; z )  is to represent it as a path integral (see, for 
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example, Slavnov and Faddeev 1978) 

U((, 7; z )  = lox d e  eiZ8 n D45( 6’) 
8’ 

x exp( i loe def[2i:(ef)ts(ei) - ~ s : ( e t ) s , ( ~ y )  ( 3 )  

where &(e’) =d&(O’)/de’ and & ( e )  = &, & ( O )  = vs. Equation (3) is regarded as a limit 
(when E + 0, N + CD, (NE = e))  of the following expression (see Slavnov and Faddeev 
1978) 

(4) 

where & ( N )  = &, & ( O )  = qs and d45(k) = d&(k)  d&:‘(k) d&(k) d(;(k) (for brevity, we 
use the notation & ( k )  = &(ks)) .  To establish the relationship sought between the 
function U(&, 7 ;  2 )  and the Coulomb Green function, we change in (3)  the variables, 
choosing as part of the new variables the function 

XA ( 6) = (CA )srtT ( 0 1 tr ( ) ( 5 )  
where ( c ~ ) ~ ~  ( A  = 1,2,3) are the matrix elements of the Pauli matrices. In view of the 
assumed properties of & the functions x A ( 0 )  constitute the components of a three- 
dimensional vector function. Making use of the relation 

( g A ) s t ( g A ) u ”  =2SsuSru -85tSuu ( 6 )  

one can easily ascertain that 

From ( 7 )  it follows that in calculating the path integral by equation (4), the appropriate 
substitution of variables is 

xA(k)  = ( p A ) s r t : ( k ) t r ( k )  
X4(k) =i[ST(k)-tT(k- l ) I t~(k) - i5T(k) [ t s (k)  - 5 s ( k -  1)1 (9)  
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The separation of the variables x 4 ( k )  is due to the fact that the function 

0 = i[k$(e)&(@) - Ss(e)is(@)l 

9 = 2i:(e)ts(e) - h 2 t s ( e ) m ) .  
is the integral of motion for a system described by the Lagrange function 

Integrating over the variables x4( k) ( k  = 1,2, . . . , N - 1) and taking into account that 
U ( ( ,  77; z )  is the integral operator, which will be used, as shown by Komarov and 
Romanova (1982), in the class of functions depending on xh only (i.e. one may integrate 
with respect to an ‘extra’ variable x 4 ( N ) ) ,  we find 

K ( r ,  r’; -ico2) = - 
16r( N )  

)I + ZE -tco2Er(k - I )  

where 

r = tT(U)S,51 r ’ =  77:(u)s!77t. (12) 

The weight (16r(N))-’  on the integration over x4(N) is defined by the Jacobian of 
the transformation (9) and the conditions of normalisation of the wavefunctions 
(Komarov and Romanova 1982). 

The last step is the change of a ‘time’ variable: let 

E ( k )  = Er(k) (13)  

which in the limit E + 0 is equivalent to the introduction of a new time variable 

t = loe de’ r( e’).  

As a result we have 

K ( r ,  r‘; - p  ) = d t  e-4w2r n D3x(7)  loX 7 

where r( t )  = r and r ( 0 )  = r’. Denoting E = -tu2 we obtain from (15) 

( E  +;A + f) K ( r ,  r ’ ;  E )  = is( r - r ‘ )  (16) 

( A  is the Laplace operator), i.e. K ( r ,  r ’ ;  E )  is the energy representation of the Coulomb 
Green function. 
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A simple method of constructing the Coulomb Green function results from the 
calculation described. Starting from the well known expression for the Green function 
of the harmonic oscillator (see, for example, Feynman and Hibbs 1965), we write 
down the 'energy' representation of the Green function for the isotropic harmonic 
oscillator in the two-dimensional complex space 

U ( &  7; z )  = -7 dt  exp i -  t (sin t ) - *  2wjom (3 
Changing the variables (12) and choosing as extra variables (see Komarov and 
Romanova 1982) 

x =tan-'(&'/[{) x'=tan-'(VY/7{) (18) 

we arrive at the formula (we use the following spherical coordinates in the spaces r 
and r ' :  r, 0, cp and r', e', cp') 

U(*, x; r', x'; z )  = 

0 0' 
x exp iw(r + r ' )  cot t - 2 _iw v ~ (  cos - cos - cos(* - * I )  [ sin t 2 2  

0 0' 
2 2  

+sin-s in-~os(x-x '+cp - c p ' )  

Upon integrating over ,y (i.e. over one of the 'extra' variables), we obtain 

K (  r, r ' ;  E )  = d Io2= dx U (  r, x; r', z )  

where Jo(x) is the Bessel function (the coefficient d is defined by the Jacobian of 
transformation d45= (1/8r) d3x dx)  It is easy to see (one can change t into -iT and 
then sinh T into (sinh x)-') that (20) is one of the forms of the Coulomb Green function 
in which it was first constructed by Hostler (1964). 

3. Example of application: non-relativistic radiation shifts of the levels of 
hydrogen-like atoms 

We shall now show that the relationship established between the Coulomb Green 
function and the Green function for the isotropic harmonic oscillator in two- 
dimensional complex space allows one to use the operator form of the function 
U (  5, 7 ; z )  in concrete calculations and thus to reduce rather complicated calculations 
of the matrix elements of the function U(&, 7; z )  to purely algebraic procedures of 
transforming the products of the creation and annihilation operators to a normal form. 
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As the specific example, consider the problem of a non-relativistic calculation of 
shifts and radiative widths of the energy levels of hydrogen-like atoms (in what follows 
we adhere to the treatment of this problem given by Bjorken and Drell (1964)). The 
Schrodinger equation for an electron moving in the nuclear Coulomb field with charge 
ze and interacting with the quantum electromagnetic field can be written in the form 
(hereafter we put h = c = m = 1)). 

Z e 2 - f r p 2 -  r C  wkC~sCks+  Er+{Smrp2 
ks 

In this formula p ,  = -i(a/ax,) ( A  = 1,2,3)  and Cis ,  Ck, are the operators of creation 
and annihilation of the photons with momentum k, energy 6& = Ikl and with the given 
state of polarisation; the unit vectors of polarisation satisfy the relations 

1 eyle;’ = a,, -- k, k, 
4 k2 Ssss 

ey ley ’ )  = 

and is the normalised volume. To eliminate the principal divergent terms we 
introduce the term of the mass renormalisation into equation (21) (see Bjorken and 
Drell 1964) 

The description (21) of the interaction of the electron with the electromagnetic field 
in a ‘dipole’ approximation implies the upper bound on the energies of the photons 
under consideration. 

The formal changes (see Komarov and Romanova 1982, 1985) 

transform equation (21) to the equation describing interaction between a ‘particle’ 
with the complex coordinates (s = 1,2) and the quantum electromagnetic field. The 
scalar product of the wavefunctions in this two-dimensional complex space can be 
defined by the following relation: 

(VI$,)= J d45V*(5A G, 55,52”)$(5;, 6Y, 5 4 9 5 2 ” )  (24) 

where 6;  = Re &, 5; = Im ts. In (21) all electron operators will henceforth be considered 
to be defined according to (23). The ‘Hamilton operator’ on the left-hand side of 
equation (21) is self-conjugate relative to the scalar product (24). 

We shall take into account the interaction between the electron and the quantum 
electromagnetic field by perturbation theory assuming the charge of the electron e to 
be a small parameter. Then to a zeroth-order approximation, we have 

I&) = IOf)+O(6)  (25) 
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where 10,) is the vacuum state of the elctromagnetic field and the equation 

(Ze’ - trp2 - t w  r )  ~ ~ ( 6 )  = o (26) 

defines the value of the parameter w (we put Eo= -io2, i.e. we take one of the states 
of the hydrogen-like atom discrete spectrum as Go([), Sm in (21) is assumed to be a 
small value of order e’). For the first-order correction to the wavefunction we obtain 

/$l)=z c l s ( o f ) ( P k s ( 6 )  
ks 

where the functions ( ~ ~ ( 6 )  are defined by the equations 

v i  = w 2 + 2 w k .  

Solutions of the equations (28) can be represented in the form 

x exp[ -at + i t ( ~ e ’  - trp’ - f v i  r ) ]  rpA+o(.$) (30) 

where we use an integral representation of an operator inverse to the self-conjugate 
operator 

1 
A - ’ = ~ l i m  J ~-dtexp(-a t+ iAt) .  

1 a-0 0 

Note that 

IOmdt  e x p [ i t ( Z e 2 - $ p 2 - f w 2 r ) ] q ( 6 )  = d47) U ( &  7; Z e 2 ) ( p ( 7 )  

where the function U ( &  7; Ze’) provides an ‘energy’ representation of the Green 
function. Finally, for the second-order correction to the energy of the system, we find 
the expression 

x ( $01 rpA exp[ -i t (t rp2 + f r I rpr I r ~ ~ )  (32) 

where we use a short notation (24) for the scalar product of the functions. As is known, 
the formula (32) involves a shift of the level Re E(’) and its radiative width r = 
-2 Im E ( 2 ) .  

Further calculations can be considerably simplified if instead of a direct use of the 
relation (31), we express the operators entering into (32) in terms of operators of 
creation ( a : ,  b:) and annihilation ( a S ,  b,) of the isotropic harmonic oscillator in 
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question. These operators are introduced through the relations (see Komarov and 
Romanova 1982): 

and satisfy the commutation relations 

(the other commutators equal zero). It is convenient to utilise the value of the parameter 
w from equation (26). Using (23) and (33) we find 

w 1 
2 2w 

r p 2 = -  ( 2 1  N - M - M’) r = - (2 + N + M + M+)  

1 
2 0  

x, = - ( m ,  + n: + nb, + m i )  i 
2 rp, = -- ( m ,  - m ; )  

where 

N = a:a, + b:b, M = a,bs M’= a:bd 

(35) 

The operators (36) generate a closed algebra (see Komarov and Romanova 1985) 
permitting one to represent, for example, the operator 

i t  U 2  
=exp( - - [ w ( 2 +  N -  M -  M + ) + > ( 2 + N + M +  M f )  

4 w 

in the normal form 

exp[ -it(jrp’+fv:r)] 

i ukt 4 vkw 
x exp (-2 N + N In 

( V k  + w ) 2 -  ( vk - w)2 exp(-iv,t) 

The use of (35)  reduces equation (26) to the form 

(37)  

(38)  [ Ze2 - ( 2  + N ) ]  I Jlo) = 0 
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from which it follows that is an eigenvector of the operator N. As shown by 
Komarov and Romanova (1982) those states are classified as 'physical' ones which 
belong to a zero eigenvalue of the operator 

Q = a f a s  - b:b,. (39) 
It is easy to see that any 'physical state' can be constructed through the action of the 
linear combinations of the powers of operators M +  and m: on the vacuum state 10) 
which is defined by the equations 

a,10) = b,10) = 0 (40) 
(the classification of 'physical states' is presented in more detail by Komarov et al 
(1987)). If, for example, I+o) is an arbitrary s state of the discrete spectrum of a 
hydrogen-like atom then there is a correspondence between this state and the vector 

(M+)"IO) n = 0, 1,2, . . . 1 
I&) = J n  ! ( n  + 1) ! 

and from (38) we find 

Ze ' 
n + l  

w = -  

( n  + 1 is the principal quantum number according to the ordinary classification of 
states). Using the equations 

N(M+)"IO) =2n(M+)"IO) M(M+)"IO)= n ( n  + I)(M+)"-'Io) (43 1 

[ M, M+] = 2 + N [ M , N ] = 2 M  [ N, M+] = 2M+ (44) 

obtained from the commutation relations 

we can easily find 

1 
(cLolrP21+o)= w ( n + l )  (+olrlcLo)=;(n+l) 

and, finally, 

where we introduce the definitions 

From a technical point of view it is an easy matter to further analyse equation (45) to 
extract the principal divergent (in the area of high energies of photons) terms and to 
obtain concrete numerical results. 
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In conclusion it may be said that the utilisation of the 'dipole' approximation for 
describing the interaction of an electron with a quantum electromagnetic field is totally 
unobligatory and the refusal of it does not actually increase the amount of algebra. 
In fact, in terms of the equation 

Ze2 - frp2 - r C wkClsCks + Er + fSmrp2 
ks 

we obtain the following expression for the shift energy in a second approximation of 
perturbation theory: 

x ( +o/ rp, e'" exp[ - i t ( f rp + v i  r ) ] e - i  kr rpp 1 c ~ ~ )  

where now 

8 r e 2  1 
8 m = - x  

3fl k Wk(Wk+fk2) 

and the operators related to the electrons are, as before, understood 
(23). Moving to the representation (33)-(35) and using the relations 

i k2 
w 2 0  

N +- k, (m, - m:) $7 (2 + N +  M +  M+) e i k r ~  e- ikr  = 

e i k r ( ~  + M+) e-ikr  

i k2 
w 2w 

= M + M + - - k, ( m, - rn 1 ) - 7 ( 2 + N + M + M + ) 

(49) 

in the sense of 

which can readily be defined through the commutation relations for the operators (36) 
following from (34), we have 

eik' exp[-it(frp2++v:r)l e-ikr 

i r  
4w = exp( -- [2iwk,(m, -,?I:) ( V i + w 2 +  k2)(2+ N )  

+(U:+ k2- w 2 ) (  M + M+)] . ) 
Noticing now that the operators 

C=(v : -~~+k*)M+2iWk,M, )  

C'= (v:-w2+ k2)M+-2iwk,m: 

generate a closed algebra 

[C, 2 +  NI = 2 c  [2+ N, C+] = 2c+ 

[ C, C'] = [( V: - w2+ k 2 ) 2 + 4 ~ 2 ] ( 2 +  N )  (53) 
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we find a normal form of the operator (51) 

eikr exp[-it(irp2+fv2,r)] e-ikr 

4 vkw 

x [ ( v i  - w 2  + k2)M’ - 2iwkAm:] 

i V k t  
x exp( -2 N + N In 

( V k  + U ) ‘ +  k 2 - [ (  v k  k 2 ]  eXp(-iVkt) 

1 - exp( -ivkt) (- ( v k  + U ) ’ +  k 2 - [  (vk - U ) ’ +  k’] exp(-ivkt) 

x[(v:-w2+k’)M+2iwk,m,] . (54) ) 
Using (54) makes the calculation of the matrix elements in (48) a relatively simple 
algebraic operation. Equations (48) and (49) do not have any divergences; therefore 
there is no need for the upper bound on the photon energy. 
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